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Abstract

An important part of building mathematical models

based on measured data is calculating the accuracy
associated with statistical estimates of the model

parameters. Indeed, without some idea of this accuracy,

the parameter estimates themselves have limited value. In

this work, an expression for computing quantitatively

correct parameter accuracy measures for maximum

likelihood parameter estimates with colored residuals is

developed and validated. This result is important because

experience in analyzing flight test data reveals that the

output residuals from maximum likelihood estimation are

almost always colored. The calculations involved can be

appended to conventional maximum likelihood estimation

algorithms. Monte Carlo simulation runs were used to

show that parameter accuracy measures from the new

technique accurately reflect the quality of the parameter
estimates from maximum likelihood estimation without the

need for correction factors or frequency domain analysis of

the output residuals. The technique was applied to flight

test data from repeated maneuvers flown on the F-18 High

Alpha Research Vehicle (HARV). As in the simulated

cases, parameter accuracy measures from the new technique

were in agreement with the scatter in the parameter

estimates from repeated maneuvers, while conventional

parameter accuracy measures were optimistic.

Nomenclature

a z vertical acceleration, g units

F mean aerodynamic chord, fl

C L lift coefficient

D dispersion matrix

E{ • } expected value
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gravitational acceleration, 32.174 ft/sec 2

pitch axis moment of inertia, slug-ft 2

cost function

mass, slugs

information matrix

number of outputs

number of parameters

total number of sample times

body axis pitch rate, rad/sec

dynamic pressure, Ibf/ft 2

discrete noise covariance matrix

autocorrelation matrix of vector v

sample standard error

wing area, ft 2

output sensitivity matrix at time (i - 1)At

time, sec

control vector

airspeed, ft/sec

output residual vector at time (i - 1)At

state vector

output vector

measured output at time (i - 1)At

angle of attack, tad

Kronecker delta

stabilator deflection, rad

sample time, sec

roll angle, tad

pitch angle, tad

parameter vector

gradient with respect to 0

element of the parameter vector

Cram6r-Rao bound for the standard error of/_

noise vector at time (i - l)At

zero vector

for every

American Institute of Aeronautics and Astronautics



superscripts

T transpose

estimate

mean value

time derivative

-1 matrix inverse

subscripts

m measured

o initial

c corrected

w wind axes

Introduction

Aircraft dynamic models typically include parameters
which quantify the dependence of aerodynamic forces and
moments on state and control variables. The values of

these parameters are often estimated from flight test data. A

good quantitative assessment of the accuracy of these
parameter estimates is important for a variety of reasons
related to experiment design, modeling, simulation, and
flight control.

Maximum likelihood I is commonly used to estimate
aerodynamic parameters from flight test data. Assuming
the model structure is correct, maximum likelihood

parameter estimates approach the true parameter values, and
the parameter variances approach their theoretical minimum
values (the Cram6r-Rao lower bounds), as the number of

measured data points increases. Generally, a flight test data
record length at least 2-3 times the period of the slowest

dynamic mode to be modeled is sufficient for the parameter
biases to be small and for the parameter variances to closely
approach the Cram6r-Rao bounds 2. In such cases, the

Cram6r-Rao bound can be used as a good approximation to
the variance of maximum likelihood parameter estimates.
References [2]-[4] compare and contrast the Cram6r-Rao

bound with other methods for assessing the accuracy of
parameter estimates. Theoretical properties of maximum
likelihood estimators and related arguments discussed in
reference [2] indicate that the Cram6r-Rao bound is the best

accuracy measure for maximum likelihood parameter
estimates.

The research described here focuses on the output error
formulation of maximum likelihood parameter estimation.
This formulation includes measurement noise, but no

process noise 1. A modified Newton-Raphson optimization
procedure 1,5 was used to determine the maximum

likelihood parameter estimates. With this approach, the

Cram6r-Rao bounds are computed as part of the estimation
procedure. It is well known, however, that the

Cram6r-Rao bounds computed in this way are usually
optimistic (too small) compared to the scatter in the
parameter estimates from repeated flight test maneuvers 2,6.
This prompted the work of Maine, Iliff and

Balakrishnan 1,2,7-9, who traced the discrepancy to the fact

that the residuals are colored for real flight test data analysis

because some deterministic modeling error is always
present. Output error techniques lump the deterministic
modeling error together with the broad band random part of
a measured signal and call this the measurement noise.

This means the measurement noise is model-dependent and
colored, because the modeling error usually lies in the same
frequency band as the aircraft rigid body dynamics and

accounts for a large part of the total noise power.
References [1],[2],[7]-[9] describe how this kind of

colored measurement noise is responsible for the
discrepancy between the conventional calculation of the
Cram6r-Rao bounds and the observed scatter in

flight-determined parameter estimates from repeated
maneuvers.

The theory underlying the output error formulation of
maximum likelihood estimation assumes that the

measurement noise is white Gaussian and band limited by
the Nyquist frequency. The band limit is the result of

discrete measurements taken at the sampling frequency,
which is twice the Nyquist frequency. This measurement
noise is broad band and incoherent. The term incoherent

implies amplitude discontinuity and a lack of consistent

phase-amplitude relationships, causing the autocorrelation

function to be close to the impulse function. This part of
the residual would be commonly recognized as having no
deterministic component. If the structure of the model were

correct, the residuals would be expected to be reasonably
close to this type of noise. In real flight test data analysis,

however, the residuals contain deterministic components
from such sources as approximations to real aircraft
aerodynamic dependencies, unmodeled dynamics such as
structural modes, and linearization of the nonlinear
equations of motion. The result is colored residuals which

violate the assumptions of conventional maximum
likelihood theory and lead to the aforementioned
discrepancy 1,2,7-9.

In reference [2], several engineering solutions were
proposed to correct for the discrepancy. Each solution was
based on the assumption that most of the residual power for

real flight data analysis is concentrated in roughly the same
frequency band as the rigid body dynamics and is due to

deterministic modeling error. This assumption is stretched
when relatively high frequency structural modes appear in

the data or when the broad band random noise has a large
enough magnitude to rival the power of the narrow band

noise due to modeling error. For multiple outputs, the
noise power from broad band random noise compared to

that from narrow band deterministic modeling error is
different for each output because of differences in the

sensor characteristics and the physical quantity being
measured. The solutions offered in reference [2] depend on
knowing something about the bandwidth of the dominant

source of power in the residuals. Obtaining this
information requires Fourier transforms of the residuals and

analysis in the frequency domain. The spectra of the
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residuals depend on the model structure, the maneuver, the

flight condition, and the instrumentation characteristics. All

of these factors can change over the course of a flight test
program, requiring changes in the corrections for the
Cram6r-Rao bounds. In addition, the bandwidths of the

deterministic modeling error for the various measured

outputs can be different from one another for the same
maneuver. The solutions from reference [2] require some
engineering judgment in the form of determining a
correction factor or estimating the bandwidth of the

dominant power in the residuals. Both of these approaches
require an experienced analyst and limit the quantitative

accuracy of the results.

In the present work, a technique first put forth in
reference [10] was used to process the residuals of a
conventional maximum likelihood estimation in order to

compute quantitatively accurate Cram6r-Rao lower bounds
for colored residuals. The approach accounts for colored

residuals using a simple estimate of the residual correlation
in the time domain. Existing maximum likelihood
estimation routines can be easily upgraded because the

technique involves a post-processing of the output residuals
to correct the Cram6r-Rao lower bounds from the

conventional calculation. The purpose of the present work

is to document a few refinements to the technique described
in reference [10], to validate the technique using Monte
Carlo simulation with colored measurement noise, and to

apply the technique to real data from repeated flight test
maneuvers.

The next section contains the theoretical analysis.
Following this, the technique was applied in a controlled
situation using simulated data from a model of the

longitudinal dynamics of a fighter aircraft. The true
parameter values were known, and the measured outputs
were corrupted with colored noise, including both narrow

band modeling error and broad band random noise. Using
200 Monte Carlo simulation runs with various colored
noise characteristics, it was demonstrated that the new

technique produces Cram6r-Rao bounds representative of
the observed scatter in the estimates. The conventional

Cram6r-Rao bounds were found to be optimistic, in

agreement with the results of previous researchL2, 6-9.

Next, the technique was applied to repeated longitudinal
flight test maneuvers at 20 deg angle of attack for the F- ! 8
High Alpha Research Vehicle (HARV) aircraft. The scatter

in the model parameter estimates from this flight test data
was consistent with the Cram6r-Rao bounds computed
using the new technique, while the conventional calculation
again gave optimistic values for the Cram&-Rao bounds.

Theoretical Development

The aircraft dynamic model can be represented as

Y_(t)= f(x(t), u(t), O) (1)

x(0) = xo (2)

y(t) = g(x(t), u(t), 0) (3)

z(i) = y(i) + _(i) i = 1,2 ..... N (4)

The notation y(i) represents the sampled value of y(t) at

t=(i-l)At. There are N sampled data points. For

conventional maximum likelihood, the discrete
measurement noise vector x_(i) is assumed to be zero mean

white Gaussian and band limited at the Nyquist frequency,

E{_(i)}=O E{_(i)_r(j)}=R_aj (5)

The maximum likelihood estimate of the parameter

vector maximizes the conditional probability of realizing the
measurements 1,5:

O=arg max [ P(Z 10 )] (6)
o

where Z is the set of all measurement vectors z(i), for

i=1, 2 ..... N. The conditional probability distribution,

P(ZI0), also known as the likelihood function, is given

by

P(Z 10)=[ (2Jr) noIRI]-N/2

• { I,_. _ -y(i)]}exp -i _ _ [z(i)- y(i)] T R -1 [z(i)

(7)

Maximizing the likelihood function in Eq. (7) is equivalent
to minimizing its negative logarithm, known as the log
likelihood function,

1 N

-In[P( ZI0)]= 2/--_1 [z(i)-y(i)]T R-I [z(i)-y(i)]

N
+ -- lnlRI

2

(8)

3
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where the added constant n° N ln(27r) was omitted because
2

it has no effect on the optimization. When R is known,
minimizing the log likelihood function in Eq. (8) is

equivalent to minimizing the cost function

N

J( O) : 1 _, [z(i )- y(i )] T R -1 [z( i)- y( i)]
_ i=l

(9)

The cost in Eq. (9) can be minimized using a modified
Newton-Raphson technique to determine parameter

updatesl, 5, starting from some initial guess of the parameter
vector. The initial guess for the parameter vector can be
obtained from equation error methods 6. Define the

sensitivity matrix

i=1,2 ..... N (10)

where thejth column of the sensitivity matrix contains the
output sensitivities for the jth parameter, computed from
central finite differences in Eqs. (1)-(3). The modified
Newton-Raphson parameter update is given by 1,5,10

Often only the diagonal elements of the R matrix are

estimated from Eq. (12), enforcing an assumption that the

measurement noise sequences for the measured outputs are
uncorrelated with one another. This assumption is
generally a good one for real flight test data. All estimates
of the measurement noise covariance matrix in this work

assume a diagonal 1_ matrix. Retaining the full I_ matrix

could have been done with little conceptual difficulty, but

the expected gains did not warrant the extra computation

involved. The noise covariance matrix estimate, 1_, was

used in the cost function of Eq. (9), and the minimization

process described above for known R was repeated. Thus,
the maximum likelihood estimation proceeds by alternately
estimating the noise covariance matrix from Eq. (12) and

minimizing the cost function using Eq. (11) with the latest
value of the estimated noise covariance matrix.

Convergence is reached when the estimated parameter

vector t_, the estimated noise covariance matrix 1_, and the

J(0) reach nearly constant values. Since maximumcost

likelihood estimation is asymptotically unbiased ].2, the

estimated parameter vector 0 should be close to the true

value e, and the gradient of the cost function with respect
to the parameter vector should be close to zero. From Eq.
(9), assuming R is held fixed,

1AO = O- 6 = S(i)TR -l S(i) ES(i)TR-] [z(i) - _(i)]
t=l

(11)

The parameter vector update from Eq. (11) is added to

the current estimate of the parameter vector in order to
approach the true value of the parameter vector. In practice,

there are times when the parameter vector update computed
from Eq. (11) leads to an increase in the cost function or a
divergence. This is because the modified Newton-Raphson

step assumes that the current estimate of the parameter
vector is near the true value. Using several iterations of a

simplex algorithm II when the modified Newton-Raphson
step produced an increase in the cost was found to be very
effective in avoiding divergence and reaching a solution.

This approach was followed in the present study.

When repeated application of Eq. (11) converges, an
estimate of the measurement noise covariance matrix, R,

can be obtained from the output residuals. The expression
for the estimate of R comes from taking the derivative of
the right hand side of Eq. (8) with respect to R, setting the
result equal to zero, and solving for R,

l N

= -_ _E [z(i)- y(i)][z(i)- y(i)] r
(12)

N

VoJ(O)Io:o = -E S(i)TR-' [z(i)- _(i)]
l=[

(13)

For practical computation, simultaneous satisfaction of
the numerical criteria given below were used to define

convergence of the maximum likelihood estimation:

[_'ii]k[_ii]k_l--[rii]k-I < 0.05 V i,

_J(o) [
< 0.05 V j,

W0=6

V j, j=l,2 ..... np

i=1,2 ..... no

j = 1,2 ..... np

(14)

where k denotes the current estimate iteration number and

_, denotes the estimate of the ith diagonal element of R.
The approximate expression for the cost gradient with

respect to the parameters (Eq. (13)) was used for the last
criterion in (14).

The minimum achievable parameter variances, the

Cram6r-Rao lower bounds, are given by the diagonal
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elements of the dispersion matrix, D 1,2,5. This dispersion
matrix is defined as the inverse of the information matrix

M, the latter being a measure of the information contained

in the data from an experiment. The expressions for these
matrices are 1,2,5

N

M = Z S(i)TR-1 S(i)
i=1

(15)

D = M -1 = S(i)TR -1 S(i)
i=l

(16)

The square root of the jth diagonal element of D, djj,
gives the Cramtr-Rao lower bound for the standard error of

the jth parameter estimate,

O'j = _jj j=l, 2 ..... np (17)

It can be seen from Eqs. (11) and (16) that the

dispersion matrix is computed when determining the
modified Newton-Raphson step as part of the conventional
maximum likelihood estimation. The assumption that the
output residuals are white and therefore uncorrelated in time

is implicit in the algorithm and indicated in Eq. (5). The

next section details the theory involved in accounting for
arbitrary colored output residuals, which are correlated in
time.

When the conventional maximum likelihood estimation

has converged, the estimated parameter vector will be close
to the true value and Eq. (11) holds. Define the residual
vector

v(i)=z(i)-_(i) i=1,2 ..... N (18)

The estimated parameter covariance matrix can be expressed
using Eq. (11) with substitutions from the definitions in

Eqs. (16) and (18),

covlo)o

= E _._D S(i)rR -1 v(i)v(j)rR-IS(j) D
[ i=l j=l

(19)

If it is assumed that the discrete noise covariance matrix

and the output sensitivities do not depend on the parameter
vector estimate at the maximum likelihood solution, then the

estimated parameter covariance matrix can be written as

cov(O):D S(i)TR-IE{v(i)v(j)T}R-IS(j) D

(20)

When the output residuals are assumed to be zero mean
white (cf Eq. (5)), then

E{v(i)v(j) T} = R6ij (21)

From Eqs. (16), (20) and (21) it is easy to see that the

parameter covariance matrix reduces to the dispersion
matrix D when the output residuals are white.

For colored residuals,

E{v(i)v(j)T}=9_w(i-j) (22)

where 9_w(i-j) is the autocorrelation of the output

residuals, so that the estimated parameter covariance matrix
can be computed from Eq. (20) using an estimated value for

9_w(i-j). Define the discrete unbiased estimate of the

output residual autocorrelation 12

N-k

_(k)=- 1 __v(i)v(i+k)r=_(_k ) (23)
N k

i=1

Substituting Eq. (22) into Eq. (20) results in

cov((t)=D S(i)rR-lZ 9_vv(i-j) R-lS(j) D
j=l

(24)

Eq. (24) was used to account for colored residuals,

which are correlated in time. Eq. (23) was used to estimate

9_w(i-j) in Eq. (24). The values for D, R -l, and S are

from the conventional maximum likelihood estimation.

Eqs. (23) and (24) embody the post-processing applied to a
conventional maximum likelihood solution to account for
colored residuals.

If the colored output residuals are assumed to be caused

by modeling error, then the maximum likelihood parameter
estimates are biased, so that

E{ 0 } = 0 + b(0) (25)

where b(0) is a vector of bias errors which are unknown

and unknowable in practice. For these biased parameter
estimates, the Cramdr-Rao bound will contain terms in

5
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addition to D, namely D multiplied by V0b(0 ) and

[Vob(0)] [V0b(0)] r (see reference [2] for details). In the

present analysis, the deterministic modeling error is
included as part of the measurement noise, making the

residuals colored. The approach taken here for arbitrary
frequency content in the measurement noise could then be
viewed as effectively including the bias error due to

deterministic modeling error as part of the parameter
accuracy measure that accounts for colored residuals.

Results

The longitudinal short period dynamics of the F-18

HARV fighter aircraft at approximately 20 degrees angle of
attack were studied. The model state equations in wind
axes are given by

dr= qS (c z a + q? )mV_. _ CZq"2-v+CZ_, _$ +q

+ g(COS( _rn ) COS({_m ) Cos(a) + sin(Om ) sin(a)) + ¢2_

c1= qSc(c M a + _q? ) +qo'*try _ _ CM__ + cM_ _5._

with measurement equations

(26)

am(i) = a(i) + o1( 0

qm(i) = q(i) + 02(i )

az" (i)= qS (Czmg\_a(i) + Czq q(i)g + Cz'sSs(i))2V

+ azo + v3(i)
i=1,2 ..... N

(27)

assuming that Cz =-Ct., azw = az, and where

a_-(_S/mV)Czo +6t o and 4_-(_S-d/Iry)CMo +OO.

Initial conditions for the states were computed from the
measured time histories of a and q using a time domain
smoother 13.

To validate the new technique for computing
Cramdr-Rao bounds, two hundred Monte Carlo simulation

runs were made using various colored measurement noise

processes. Each noise sequence had part of its power in the
frequencies between 0 hz and 1 hz inclusive (roughly the

frequency band of the uncorrupted simulation outputs),
with the remaining power taken up by white Gaussian noise

out to the Nyquist frequency. The narrow band portion of
the colored noise sequence was generated by passing zero
mean white Gaussian noise through a fifth order

Chebyshev low pass filter with frequency cutoff set at
1 hz. The resulting narrow band noise was combined with

wide band noise from a separate realization of the zero

mean white Gaussian noise process. The percentage of the
total noise power from the narrow band noise was

determined for each Monte Carlo run by a random number

with uniform distribution on the interval [0,100]. This

procedure was carried out for each simulated output on each
Monte Carlo run, and the resulting colored noise sequences
were scaled to achieve approximately a 5 to i signal to
noise ratio for all simulated outputs. Figure 1 shows the
power spectral density for the colored noise added to a for

run 200, where 19% of the noise power was in the
frequency range of 0 hz to 1 hz, inclusive. Colored noise

sequences generated in this way are representative of

residual sequences observed when analyzing real flight test
data, and were used for that reason.

To make the Monte Carlo simulation runs realistic, the
stabilator input was taken from measured data for the F- 18

HARV flying a maneuver designed specifically for accurate
parameter estimation 14. The stabilator input is shown as

the solid line in figure 2. The values of the parameters used
in the simulations (given in column 2 of Table 1)
approximately reflect the short period dynamics of the F-I 8

HARV at 20 degrees angle of attack. The stabilator input
and parameter values were the same for each simulated data
run, so that the information in the data was constant. The

sampling rate was 50 hz and the data record length was 14
seconds. Maximum likelihood estimation as described in

the previous section was used to estimate the parameters.

Since the parameter values were known for the

simulated data, the true accuracy of the maximum likelihood

estimates could be compared to the accuracy indicated by
the Cram6r-Rao bound calculations. The conventional

Cram6r-Rao bounds for the parameter standard errors were
denoted by cr and were computed as the square root of the

diagonal elements of matrix D in Eq. (16). The
Cram6r-Rao bounds for the parameter standard errors
corrected for colored residuals were denoted by o'c and

were computed as the square root of the diagonal elements
of the covariance matrix from Eq. (24). Results from both
the conventional computation and the corrected calculation
were expressed in terms of the ratio of the absolute

deviation of each parameter estimate from its true value to

the computed Cram6r-Rao bound for the parameter standard
error. This accuracy measure was assigned the symbol r/,

(28)

where the subscript c denotes values for the corrected
Cramdr-Rao bounds.

For a maximum likelihood estimator, the probability
distribution of the parameter estimates about their true value
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approaches a Gaussian distribution as the number of data

points gets large. Evidence of this can be found in figure 3,

which is a histogram of the parameter estimates from all

two hundred Monte Carlo runs for the CMa parameter.

Corresponding histograms for the other estimated
parameters were similar. It follows that r/and r/c should be

less than 3 almost all the time if the computed Cram6r-Rao
bounds reflect the true accuracy of the parameter estimates.

Table 1 shows results for two representative Monte
Carlo runs. Columns 4 and 5 for run 47 and columns 7

and 8 for run 185 show that the corrected Cram6r-Rao

bounds accurately reflected the true parameter accuracy,
while the conventional CramSr-Rao bounds were optimistic
(i.e., too small) and produced 7"/ratios which exceeded 3

for almost every estimated parameter. Considering the full
set of two hundred Monte Carlo runs, Table 2 gives the
mean values and standard errors of I/ and r/c for each
estimated parameter. This data shows that the conventional

Cram6r-Rao bounds were inaccurate on the average and
exhibited a large variability, while the converse was true for
the corrected Cram&-Rao bounds.

Table 3 gives another summary of the parameter
estimation results for the two hundred Monte Carlo

simulation runs. The second column of the table gives the

mean values of the parameter estimates, and the third
column gives the sample standard errors for the parameter
estimates, s, computed from the scatter of the parameter

estimates. Columns 4 and 6 give the mean values of the
Cram6r-Rao bounds for the parameter standard errors
computed using the conventional and corrected

techniques,_ and _c, respectively. Columns 5 and 7

show the ratio of the sample standard errors for the
parameter estimates to _ and _c, respectively. These

values are far less than 3 for the corrected calculation of the

Cram6r-Rao bounds, indicating a proper accounting for the
changes in the residual spectra, while the conventional

calculation of the Cram6r-Rao bound was optimistic,
producing values of the s/_ ratio greater than 3.

The data in Tables 1,2, and 3 demonstrate that the
extent to which the conventional Cram6r-Rao bounds

misrepresented the true parameter accuracy was neither
consistent nor predictable from parameter to parameter or
from run to run. This phenomena has been observed

previously when analyzing flight test data from repeated
maneuvers 6. It follows that the common practice of
applying a fixed correction factor to the conventional
calculation of the Cram6r-Rao bounds is incorrect to a

varying and unpredictable degree in cases where coloring of
the residual spectrum varies, as in this simulation study.
Changes in the coloring of the residuals similar to those

studied here can easily be brought about in practice by
changes in the model structure, the maneuver, the flight
condition, or the instrumentation.

Next, flight test data was analyzed from five repeats of
the same longitudinal maneuver, flown on the F-18 HARV

at approximately 20 degrees angle of attack and 25,000

feet. The input was applied to the symmetric stabilator by a
computerized On-Board Excitation System (OBES), so that

the runs were very nearly repeats of one another. Figure 2
shows the excellent repeatability using the OBES system

for the five repeated flight test runs of the stabilator input
maneuver. All of the data used for analysis was sampled at
50 hz. Corrections were applied to the angle of attack and
accelerometer measurements to account for sensor offsets

from the center of gravity, and the angle of attack

measurement was corrected for upwash. Data compatibility
analysis 15 revealed that the data from the sensors was

consistent to a degree which warranted no further
corrections. Maximum likelihood estimation was carried

out using the same procedure as for the Monte Carlo

simulation runs. The same model given in Eqs. (26)-(27)
was used.

Table 4 gives flight test results in a form similar to
Table 3. Column 7 shows that the corrected Cram6r-Rao
bounds were an accurate measure of the scatter in the

parameter estimates. In column 5, the conventional

Cram6r-Rao bounds were again optimistic for the pitching
moment (Cu) parameters but were close to correct for the

vertical force (Cz) parameters. The reason is that the o_and

az measurements are the main influences on the Cz

parameters, and the residuals for both these outputs
exhibited considerable power at high frequencies, due to
unmodeled structural modes. The power spectrum for a

typical az residual (from run !) is shown in figure 4.

These colored residual spectra roughly resembled constant
power out to the Nyquist frequency, which is the
assumption made in the theory underlying the conventional
Cram6r-Rao bound calculation. The q measurement did not

have these high frequency components, so the conventional

Cram6r-Rao bound calculation gave very optimistic values
for the Cu parameters. The power spectrum for a typical q

residual (from run 1) is shown in figure 5. The corrected
calculation of the Cram6r-Rao bound worked equally well
for the Cz and CM parameters because information about

the particular coloring of the residuals is incorporated
automatically via the autocorrelation estimate from Eq. (23)
used in Eq. (24).

Figures 6 and 7 depict the parameter estimation results

for the aerodynamic parameters. The error bars represent
the Cram6r-Rao bounds for the standard errors computed
using the conventional calculation for figure 6 and the
corrected calculation for figure 7. The error bars in the

lower three plots of figure 6 are difficult to see because they

are roughly the size of the circles on the plot marking the
individual parameter estimates. These plots and the
accompanying data in Table 4 show that the standard

calculation for the CramEr-Rao bounds gave optimistic
values compared to the scatter in the estimates from

repeated maneuvers, whereas the corrected calculation for

the Cram6r-Rao bounds produced Cram6r-Rao bounds
which accurately reflected the scatter of the estimates.

7
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Concluding Remarks

Algorithms for aircraft parameter estimation using the

output error formulation of maximum likelihood are in
widespread use. The Cram6r-Rao bounds characterizing

parameter accuracy that are obtained from conventional
calculations are known to be generally optimistic (i.e., too

small) in practice, compared to the scatter in parameter
values estimated from repeated maneuvers. Parameter
estimates have limited utility when there is no firm idea of

their accuracy. In this work, an expression for correcting
Cram6r-Rao bounds from maximum likelihood estimation

with colored residuals was presented and validated. This
result is important because the residuals from maximum
likelihood estimation are almost always colored in practice,

due to deterministic modeling error.

The calculations involved in the algorithm for
computing Cram6r-Rao bounds that account for colored
residuals can be carried out in a short subroutine called at
the conclusion of a conventional maximum likelihood

estimation algorithm. Bandwidth of the dominant power in
the residuals need not be known or estimated, since it is

accounted for automatically in the algorithm by an unbiased
estimate of the residual autocorrelation. There is no need

for correction factors. The algorithm was shown to work
for a wide range of colored residual spectra similar to what

might be encountered in real flight test data analysis. All
calculations are performed in the time domain, obviating the

need for frequency domain analysis of the residuals.
The corrected calculation for the Cram6r-Rao bounds

presented here produced consistently accurate measures of
the scatter in the parameter estimates, using an algorithm
with moderate computational cost that can be applied as a

post-processing of the output residuals from a conventional
maximum likelihood solution.

Monte Carlo simulation runs using various colored
noise sequences were carried out to validate the

performance of the algorithm. Analysis of flight data from
repeated maneuvers flown on the F-18 High Alpha
Research Vehicle (HARV) demonstrated the validity of the
technique for computing appropriate parameter accuracy

measures using real flight test data. The algorithm
described in this work was shown to be an effective means

of accurately determining the quality of parameter estimates
from the output error formulation of maximum likelihood
estimation.
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PARAMETER ESTIMATION RESULTS Table 3 PARAMETER ESTIMATION RESULTS
FOR TYPICAL MONTE CARLO RUNS FOR 200 MONTE CARLO RUNS

Run 47 Run 185

o 0 o oc b ,7 0c

Cza -2.00 -1.30 4.24 0.94

Czq -65.0 -13.8 4.10 0.99

Czs, -0.90 -1.48 4.20 0.95

Cto -0.80 -1.08 4.73 1.04

Cgc_ -0.30 -0.35 7.00 1.67

Cnq -16.0 -17.3 3.55 0.86

CM,_s -0.70 -0.67 5.42 1.03

0o 0.08 0.09 5.77 1.20

azo -0.70 -1.07 6.11 1.36

-3.78 9.33 2.26

-81.8 1.37 0.33

0.04 6.46 1.59

0.01 10.46 2.33

-0.32 3.09 0.48

-13.2 7.04 1.13

-0.72 3.86 0.57

0.09 5.01 0.73

0.04 9.48 2.14

Simulation Conventional Corrected

"X-

0 s 6 s/_ ac s/_,.

Cza -1.94 0.819 0.179 4.56 0.521 1.57

Czq -62.1 51.1 12.3 4.17 38.7 1.32

Cz_, -0.92 0.550 0.139 3.96 0.441 1.25

ao -0.82 0.312 0.068 4.56 0.199 1.57

CMa -0.30 0.037 0.008 4.80 0.022 1.67

CMq -16.1 1.822 0.448 4.07 1.278 1.43

CM,L -0.70 0.030 0.007 4.11 0.021 1.43

qo 0.08 0.013 0.003 4.67 0.008 1.64

azo -0.72 0.313 0.069 4.54 0.198 1.58

Table 2 PARAMETER ACCURACY MEASURE
STATISTICS FOR 200 MONTE CARLO RUNS

Conventional Corrected

Cza 3.84 2.85 1.37 1.10

Czq 3.43 2.72 1.10 0.83

Cz_s 3.30 2.51 1.10 0.91

t_o 3.88 2.89 1.36 1.05

CMa 4.03 3.42 1.44 1.38

Cgq 3.62 2.66 1.26 1.08

CMs_ 3.63 2.72 1.23 0.88

qo 3.97 3.19 1.37 1.15

azo 3.88 2.80 1.39 1.06

Table 4 PARAMETER ESTIMATION RESULTS
FROM FLIGHT TEST DATA

Flight Conventional Corrected

"7"

0 s 6 sl_ _ sl_.

Cz_ -2.04 0.161 0.083 1.95 0.192 0.84

Czq -61.0 4.86 3.48 1.40 7.67 0.63

Cz_, -0.92 0.081 0.044 1.82 0.081 1.00

ao -0.72 0.068 0.031 2.21 0.068 1.00

CM_ -0.30 0.065 0.006 10.80 0.052 1.26

CMq -19.1 2.55 0.372 6.86 2.84 0.90

CM,L -0.74 0.048 0.007 6.90 0.051 0.94

qo 0.08 0.025 0.002 10.62 0.020 1.24

azo -0.66 0.067 0.031 2.17 0.070 0.95
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